Extensions 1→N→G→Q→1 with N=C23xD13 and Q=C2

Direct product G=NxQ with N=C23xD13 and Q=C2
dρLabelID
C24xD13208C2^4xD13416,234

Semidirect products G=N:Q with N=C23xD13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23xD13):1C2 = C22:D52φ: C2/C1C2 ⊆ Out C23xD13104(C2^3xD13):1C2416,103
(C23xD13):2C2 = C23:D26φ: C2/C1C2 ⊆ Out C23xD13104(C2^3xD13):2C2416,158
(C23xD13):3C2 = C22xD52φ: C2/C1C2 ⊆ Out C23xD13208(C2^3xD13):3C2416,214
(C23xD13):4C2 = C2xD4xD13φ: C2/C1C2 ⊆ Out C23xD13104(C2^3xD13):4C2416,216
(C23xD13):5C2 = C22xC13:D4φ: C2/C1C2 ⊆ Out C23xD13208(C2^3xD13):5C2416,226

Non-split extensions G=N.Q with N=C23xD13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23xD13).1C2 = C22:C4xD13φ: C2/C1C2 ⊆ Out C23xD13104(C2^3xD13).1C2416,101
(C23xD13).2C2 = C2xD26:C4φ: C2/C1C2 ⊆ Out C23xD13208(C2^3xD13).2C2416,148
(C23xD13).3C2 = C2xD13.D4φ: C2/C1C2 ⊆ Out C23xD13104(C2^3xD13).3C2416,211
(C23xD13).4C2 = C23xC13:C4φ: C2/C1C2 ⊆ Out C23xD13104(C2^3xD13).4C2416,233
(C23xD13).5C2 = C22xC4xD13φ: trivial image208(C2^3xD13).5C2416,213

׿
x
:
Z
F
o
wr
Q
<